MPPS™ Miniature Package Power Solutions 30V N Channel MOSFET & 40V, 1A SCHOTTKY DIODE COMBINATION DUAL

SUMMARY

N Channel MOSFET--- $V_{(BR)DSS}$ =30V; $R_{SAT(on)}$ =0.18 Ω ; I_D = 2.7A Schottky Diode --- V_R = 40V; V_F = 500mV (@1A); I_C =1A

DESCRIPTION

Packaged in the new innovation 3mm x 2mm MLP this combination dual product comprises a low gate drive, low on-resistance N-Channel MOSFET plus a fast-switching 1A Schottky barrier diode. This combination provides for highly efficient performance in a range of applications, including DC-DC conversion and low voltage power-management circuits.

3mm x 2mm Dual Die MLP

Users will also gain several other key benefits:

Performance capability equivalent to much larger packages

Improved circuit efficiency & power levels

PCB area and device placement savings

Lower package height (0.9mm nom)

Reduced component count

Anode

Cathode

FEATURES

- Low on-resistance
- Fast switching speed
- Low threshold
- Low gate drive
- Extremely Low V_F, fast switching Schottky
- 3mm x 2mm MLP

APPLICATIONS

- DC DC Converters
- Low voltage power-management

ORDERING INFORMATION

DEVICE	REEL	TAPE WIDTH	QUANTITY PER REEL
ZXMNS3BM832TA	7′′	8mm	3000
ZXMNS3BM832TC	13′′	8mm	10000

PINOUT

DEVICE MARKING

MSA

ZETEX

ABSOLUTE MAXIMUM RATINGS.

PARAMETER	SYMBOL	VALUE	UNIT
MOSFET			
Drain-Source Voltage	V _{DSS}	30	V
Gate-Charge Voltage	V _{GS}	±12	V
Continuous Drain Current@V _{GS} =4.5V; T _A =25°C (b)(d) @V _{GS} =4.5V; T _A =70°C (b)(d) @V _{GS} =2.5V; T _A =25°C (a)(d)	I _D	2.72 2.18 2.00	A A A
Pulsed Drain Current (c)	I _{DM}	t.b.a	А
Source Current (Body Diode) @T _A =25°C (b)(d)	I _S	2.7	А
Pulsed Source Current (Body Diode)(c)	I _{SM}	t.b.a	А
Storage Temperature Range	T _{stg}	-55 to +150	°C
Junction Temperature	Тј	150	°C
Schottky Diode			
Continuous Reverse Voltage	V _R	40	V
Forward Current	I _F	1	А
Non Repetitive Forward Current t≤ 100μs	I _{FSM}	12	А
t≤ 10ms		5.2	Α
Forward Voltage @ 1A	V _F	500	mV
Storage Temperature Range	T _{stg}	-55 to +150	°C
Junction Temperature	T _i	125	°C

Notes

- (a) For a dual device surface mounted on 8 sq cm single sided 2oz copper on FR4 PCB, in still air conditions with all exposed pads attached. The copper are is split down the centre line into two separate areas with one half connected to each half of the dual device.
- (b) Measured at t<5 secs for a dual device surface mounted on 8 sq cm single sided 2oz copper on FR4 PCB, in still air conditions with all exposed pads attached. The copper are is split down the centre line into two separate areas with one half connected to each half of the dual device.
- (c) For a dual device surface mounted on 8 sq cm single sided 2oz copper on FR4 PCB, in still air conditions with minimal lead connections only.
- (d) For a dual device surface mounted on 10 sq cm single sided 1oz copper on FR4 PCB, in still air conditions with all exposed pads attached attached. The copper are is split down the centre line into two separate areas with one half connected to each half of the dual device.
- (e) For a dual device surface mounted on 85 sq cm single sided 2oz copper on FR4 PCB, in still air conditions with all exposed pads attached attached. The copper are is split down the centre line into two separate areas with one half connected to each half of the dual device.
- (f) For a dual device with one active die.
- (g) For dual device with 2 active die running at equal power.
- (h) Repetitive rating pulse width limited by max junction temperature. Refer to Transient Thermal Impedance graph.
- (i) The minimum copper dimensions required for mounting are no smaller than the exposed metal pads on the base if the device as shown in the package dimensions data. The thermal resistance for a dual device mounted on 1.5mm thick FR4 board using minimum copper 1 oz weight, 1mm wide tracks and one half of the device active is Rth = 250°C/W giving a power rating of Ptot = 500mW.

THERMAL PARAMETERS

THERIVIAL PARAMETERS						
PARAMETER	SYMBOL	VALUE	UNIT			
Schottky						
Power Dissipation at TA=25°C (a)(d)	P _D	1.2	W			
Linear Derating Factor		12	mW/°C			
Transistor						
Power Dissipation at TA=25°C (a)(f)	P _D	1.5	W			
Linear Derating Factor		12	mW/°C			
Power Dissipation at TA=25°C (b)(f)	P _D	2.9	W			
Linear Derating Factor		23.2	mW/°C			
Power Dissipation at TA=25°C (c)(f)	P _D	1	W			
Linear Derating Factor		8	mW/°C			
Power Dissipation at TA=25°C (d)(f)	P _D	1.13	W			
Linear Derating Factor		8	mW/°C			
Power Dissipation at TA=25°C (d)(g)	P _D	1.7	W			
Linear Derating Factor		13.6	mW/°C			
Power Dissipation at TA=25°C (e)(g)	P _D	3	W			
Linear Derating Factor		24	mW/°C			

THERMAL RESISTANCE

THE RESIDENCE				
PARAMETER	SYMBOL	VALUE	UNIT	
Junction to Ambient (a)(f)	$R_{ heta JA}$	83.3	°C/W	
Junction to Ambient (b)(f)	$R_{\theta JA}$	43	°C/W	
Junction to Ambient (c)(f)	$R_{\theta JA}$	125	°C/W	
Junction to Ambient (d)(f)	$R_{\theta JA}$	111	°C/W	
Junction to Ambient (d)(g)	$R_{\theta JA}$	73.5	°C/W	
Junction to Ambient (e)(g)	$R_{\theta JA}$	41.7	°C/W	

Notes

(a) For a dual device surface mounted on 8 sq cm single sided 2oz copper on FR4 PCB, in still air conditions with all exposed pads attached. The copper are is split down the centre line into two separate areas with one half connected to each half of the dual device.

(b) Measured at t<5 secs for a dual device surface mounted on 8 sq cm single sided 2oz copper on FR4 PCB, in still air conditions with all exposed pads attached. The copper are is split down the centre line into two separate areas with one half connected to each half of the dual device.

(c) For a dual device surface mounted on 8 sq cm single sided 2oz copper on FR4 PCB, in still air conditions with minimal lead connections only.

(d) For a dual device surface mounted on 10 sq cm single sided 1oz copper on FR4 PCB, in still air conditions with all exposed pads attached attached. The copper are is split down the centre line into two separate areas with one half connected to each half of the dual device.

(e) For a dual device surface mounted on 85 sq cm single sided 2oz copper on FR4 PCB, in still air conditions with all exposed pads attached attached. The copper are is split down the centre line into two separate areas with one half connected to each half of the dual device.

- (f) For a dual device with one active die.
- (g) For dual device with 2 active die running at equal power.
- (h) Repetitive rating pulse width limited by max junction temperature. Refer to Transient Thermal Impedance graph.
- (i) The minimum copper dimensions required for mounting are no smaller than the exposed metal pads on the base if the device as shown in the package dimensions data. The thermal resistance for a dual device mounted on 1.5mm thick FR4 board using minimum copper 1 oz weight, 1mm wide tracks and one half of the device active is Rth = 250°C/W giving a power rating of Ptot = 500mW.

ELECTRICAL CHARACTERISTICS (at T_{amb} = 25°C unless otherwise stated).

PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT	CONDITIONS.		
MOSFET		•		•				
STATIC								
Drain-Source Breakdown Voltage	V _{(BR)DSS}	30			V	I _D =250μA, V _{GS} =0V		
Zero Gate Voltage Drain Current	I _{DSS}			1	μА	V _{DS} =30V, V _{GS} =0V		
Gate-Body Leakage	I _{GSS}			100	nA	V _{GS} =±20V, V _{DS} =0V		
Gate-Source Threshold Voltage	V _{GS(th)}	0.7			V	I _D =250μA, V _{DS} = V _{GS}		
Static Drain-Source On-State Resistance (1)	R _{DS(on)}		0.13 0.17	0.18 0.25	Ω Ω	V _{GS} =4.5V, I _D =1.5A V _{GS} =2.5V, I _D =1.3A		
Forward Transconductance (1)(3)	9fs		t.b.a		S	V _{DS} =15V,I _D =1.5A		
DYNAMIC (3)			•					
Input Capacitance	C _{iss}		314		pF			
Output Capacitance	Coss		40		pF	V _{DS} =15 V, V _{GS} =0V, f=1MHz		
Reverse Transfer Capacitance	C _{rss}		23		pF	1-111112		
SWITCHING(2) (3)			•	•				
Turn-On Delay Time	t _{d(on)}		1.1		ns			
Rise Time	t _r		1.5		ns	Vpp =15V, lp=1A		
Turn-Off Delay Time	t _{d(off)}		5.1		ns	$V_{DD} = 15V, I_{D} = 1A$ $R_{G} = 6.0\Omega, V_{GS} = 4.5V$		
Fall Time	t _f		2.1		ns			
Total Gate Charge	Q_g		2.9		nC	\		
Gate-Source Charge	Q_{gs}		0.6		nC	V _{DS} =15V,V _{GS} =4.5V, I _D =1.5A		
Gate-Drain Charge	Q_{gd}		0.8		nC			
SOURCE-DRAIN DIODE								
Diode Forward Voltage (1)	V _{SD}		0.85	0.95	V	$T_J=25$ °C, $I_S=1.7A$, $V_{GS}=0V$		
Reverse Recovery Time (3)	t _{rr}		17.7		ns	T _J =25°C, I _F =2.7A,		
Reverse Recovery Charge (3)	Q _{rr}		13.0		nC	di/dt= 100Å/μs		
SCHOTTKY DIODE ELECTRICAL CHARACT	ERISTICS							
Reverse Breakdown Voltage	V _{(BR)R}	40	60		V	I _R =300μA		
Forward Voltage	V _F		240 265 305 355 390 425 495 420	270 290 340 400 450 500 600	mV mV mV mV mV mV	F=50mA* F=100mA* F=250mA* F=500mA* F=750mA* F=1000mA* F=1500mA* F=1000mA, Ta=100°C		
Reverse Current	I _R		50	100	μΑ	V _R =30V		
Diode Capacitance	C _D		25		pF	f=1MHz,V _R =25V		
Reverse Recovery Time	t _{rr}		12		ns	switched from I _F =500mA to I _R =500mA Measured at I _R =50mA		

NOTES:

 ⁽¹⁾ Measured under pulsed conditions. Width ≤300μs. Duty cycle ≤ 2%.
(2) Switching characteristics are independent of operating junction temperature.
(3) For design aid only, not subject to production testing.

MLP832 PACKAGE OUTLINE (3mm x 2mm Micro Leaded Package)

*Exposed Flags. Solder connection to improve thermal dissipation is optional.

F1 at collector 1 potential F2 at collector 2 potential

CONTROLLING DIMENSIONS IN MILLIMETRES APPROX. CONVERTED DIMENSIONS IN INCHES

MLP832 PACKAGE DIMENSIONS

	MILLIN	IETRES	INC	HES		MILLIMETRES		INCHES	
DIM	MIN.	MAX.	MIN.	MAX.	DIM	MIN.	MAX.	MIN.	MAX.
Α	0.80	1.00	0.031	0.039	е	0.65 REF		0.0256 BSC	
A1	0.00	0.05	0.00	0.002	Е	2.00 BSC		0.0787 BSC	
A2	0.65	0.75	0.0255	0.0295	E2	0.43 0.63		0.017	0.0249
А3	0.15	0.25	0.006	0.0098	E4	0.16	0.36	0.006	0.014
b	0.24	0.34	0.009	0.013	L	0.20	0.45	0.0078	0.0157
b1	0.17	0.30	0.0066	0.0118	L2		0.125	0.00	0.005
D	3.00	BSC	0.118	BSC	r	0.075 BSC		SC 0.0029 BSC	
D2	0.82	1.02	0.032	0.040	θ	0°	12°	0°	12°
D3	1.01	1.21	0.0397	0.0476					

© Zetex plc 2002

Zetex plc Fields New Road Chadderton Oldham, OL9 8NP United Kingdom Telephone (44) 161 622 4422 Fax: (44) 161 622 4420

Zetex GmbH Streitfeldstraße 19 D-81673 München

Hauppauge, NY11788 USA

Zetex (Asia) Ltd 3701-04 Metroplaza, Tower 1 Hing Fong Road Kwai Fong

Germany Telefon: (49) 89 45 49 49 0 Fax: (49) 89 45 49 49 49

Telephone: (631) 360 2222 Fax: (631) 360 8222

Zetex Inc 700 Veterans Memorial Hwy

Hong Kong Telephone: (852) 26100 611 Fax: (852) 24250 494

These offices are supported by agents and distributors in major countries world-wide.

This publication is issued to provide outline information only which (unless agreed by the Company in writing) may not be used, applied or reproduced for any purpose or form part of any order or contract or be regarded as a representation relating to the products or services concerned. The Company reserves the right to alter without notice the specification, design, price or conditions of supply of any product or service.

For the latest product information, log on to www.zetex.com

