MPPS ${ }^{\text {TM }}$ Miniature Package Power Solutions
 30V N Channel MOSFET \& 40V, 1A SCHOTTKY DIODE COMBINATION DUAL

SUMMARY

N Channel MOSFET--- $V_{(B R) D s s}=30 \mathrm{~V} ; R_{\text {SAT (on) }}=0.18 \Omega ; I_{D}=2.7 \mathrm{~A}$
Schottky Diode --- $\mathrm{V}_{\mathrm{R}}=40 \mathrm{~V} ; \mathrm{V}_{\mathrm{F}}=500 \mathrm{mV}$ (@1A); $\mathrm{I}_{\mathrm{C}}=1 \mathrm{~A}$

DESCRIPTION

Packaged in the new innovation $3 \mathrm{~mm} \times 2 \mathrm{~mm}$ MLP this combination dual product comprises a low gate drive, low on-resistance N-Channel MOSFET plus a fast-switching 1A Schottky barrier diode. This combination provides for highly efficient performance in a range of applications, including DC-DC conversion and low voltage power-management circuits
Users will also gain several other key benefits:

$3 \mathrm{~mm} \times 2 \mathrm{~mm}$ Dual Die MLP

Performance capability equivalent to much larger packages
Improved circuit efficiency \& power levels
PCB area and device placement savings
Lower package height (0.9 mm nom)
Reduced component count

FEATURES

- Low on-resistance
- Fast switching speed

- Low threshold

- Low gate drive
- Extremely Low V_{F}, fast switching Schottky
- $3 \mathrm{~mm} \times 2 \mathrm{~mm}$ MLP

APPLICATIONS

- DC - DC Converters
- Low voltage power-management

ORDERING INFORMATION

DEVICE	REEL	TAPE WIDTH	QUANTITY PER REEL
ZXMNS3BM832TA	$7^{\prime \prime}$	8 mm	3000
ZXMNS3BM832TC	$13^{\prime \prime}$	8 mm	10000

PINOUT

DEVICE MARKING
 MSA

ZXMNS3BM832

ABSOLUTE MAXIMUM RATINGS.

PARAMETER	SYMBOL	VALUE	UNIT
MOSFET			
Drain-Source Voltage	$\mathrm{V}_{\text {DSS }}$	30	V
Gate-Charge Voltage	$\mathrm{V}_{\text {GS }}$	± 12	V
Continuous Drain Current@VGS $=4.5 \mathrm{~V} ; \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}(\mathrm{b})(\mathrm{d})$ $@ \mathrm{~V}_{\mathrm{GS}}=4.5 \mathrm{~V} ; \mathrm{T}_{\mathrm{A}}=70^{\circ} \mathrm{C}(\mathrm{b})(\mathrm{d})$ $@ V_{G S}=2.5 \mathrm{~V} ; \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}(\mathrm{a})(\mathrm{d})$	ID	$\begin{aligned} & 2.72 \\ & 2.18 \\ & 2.00 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { A } \\ & \text { A } \\ & \text { A } \end{aligned}$
Pulsed Drain Current (c)	$\mathrm{I}_{\text {DM }}$	t.b.a	A
Source Current (Body Diode) @ $\mathrm{T}_{\text {A }}=25^{\circ} \mathrm{C}$ (b)(d)	Is	2.7	A
Pulsed Source Current (Body Diode)(c)	ISM	t.b.a	A
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-55 to +150	${ }^{\circ} \mathrm{C}$
Junction Temperature	T_{j}	150	${ }^{\circ} \mathrm{C}$
Schottky Diode			
Continuous Reverse Voltage	V_{R}	40	V
Forward Current	I_{F}	1	A
Non Repetitive Forward Current $\mathrm{t} \leq 100 \mu \mathrm{~s}$ $\mathrm{t} \leq 10 \mathrm{~ms}$	$\mathrm{I}_{\text {FSM }}$	$\begin{gathered} 12 \\ 5.2 \end{gathered}$	$\begin{aligned} & \text { A } \\ & \text { A } \end{aligned}$
Forward Voltage @ 1A	V_{F}	500	mV
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-55 to +150	${ }^{\circ} \mathrm{C}$
Junction Temperature	T_{j}	125	${ }^{\circ} \mathrm{C}$

Notes
(a) For a dual device surface mounted on 8 sq cm single sided 2 oz copper on FR4 PCB, in still air conditions with all exposed pads attached. The copper are is split down the centre line into two separate areas with one half connected to each half of the dual device.
(b) Measured at $\mathrm{t}<5$ secs for a dual device surface mounted on 8 sq cm single sided 2 oz copper on FR4 PCB, in still air conditions with all exposed pads attached. The copper are is split down the centre line into two separate areas with one half connected to each half of the dual device.
(c) For a dual device surface mounted on 8 sq cm single sided 2 oz copper on FR4 PCB, in still air conditions with minimal lead connections only
(d) For a dual device surface mounted on 10 sq cm single sided $10 z$ copper on FR4 PCB, in still air conditions with all exposed pads attached attached. The copper are is split down the centre line into two separate areas with one half connected to each half of the dual device.
(e) For a dual device surface mounted on 85 sq cm single sided 2 oz copper on FR4 PCB, in still air conditions with all exposed pads attached attached. The copper are is split down the centre line into two separate areas with one half connected to each half of the dual device
(f) For a dual device with one active die
g) For dual device with 2 active die running at equal power.
(h) Repetitive rating - pulse width limited by max junction temperature. Refer to Transient Thermal Impedance graph.
(i) The minimum copper dimensions required for mounting are no smaller than the exposed metal pads on the base if the device as shown in the package dimensions data. The thermal resistance for a dual device mounted on 1.5 mm thick FR4 board using minimum copper 1 oz weight, 1 mm wide tracks and one half of the device active is Rth $=250^{\circ} \mathrm{C} / \mathrm{W}$ giving a power rating of Ptot $=500 \mathrm{~mW}$.

THERMAL PARAMETERS

PARAMETER	SYMBOL	VALUE	UNIT
Schottky			
Power Dissipation at $\mathrm{TA}=25^{\circ} \mathrm{C}$ (a)(d) Linear Derating Factor	P_{D}	$\begin{aligned} & 1.2 \\ & 12 \end{aligned}$	$\begin{gathered} \mathrm{W} \\ \mathrm{~mW} /{ }^{\circ} \mathrm{C} \end{gathered}$
Transistor			
Power Dissipation at $\mathrm{TA}=25^{\circ} \mathrm{C}$ (a)(f) Linear Derating Factor	P_{D}	$\begin{aligned} & 1.5 \\ & 12 \end{aligned}$	$\underset{\mathrm{WW} /{ }^{\circ} \mathrm{C}}{\mathrm{~W}}$
Power Dissipation at $\mathrm{TA}=25^{\circ} \mathrm{C}$ (b)(f) Linear Derating Factor	$P_{\text {D }}$	$\begin{gathered} \hline 2.9 \\ 23.2 \end{gathered}$	$\begin{gathered} \mathrm{W} \\ \mathrm{~mW} /{ }^{\circ} \mathrm{C} \end{gathered}$
Power Dissipation at $\mathrm{TA}=25^{\circ} \mathrm{C}$ (c)(f) Linear Derating Factor	P_{D}	$\begin{aligned} & 1 \\ & 8 \end{aligned}$	$\underset{\mathrm{WW} /{ }^{\circ} \mathrm{C}}{\mathrm{~W}}$
Power Dissipation at $\mathrm{TA}=25^{\circ} \mathrm{C}$ (d)(f) Linear Derating Factor	$P_{\text {D }}$	$\begin{gathered} 1.13 \\ 8 \end{gathered}$	$\underset{\mathrm{WW} /{ }^{\circ} \mathrm{C}}{\mathrm{~W}}$
Power Dissipation at $\mathrm{TA}=25^{\circ} \mathrm{C}(\mathrm{d})(\mathrm{g})$ Linear Derating Factor	$P_{\text {D }}$	$\begin{gathered} 1.7 \\ 13.6 \end{gathered}$	W
Power Dissipation at $\mathrm{TA}=25^{\circ} \mathrm{C}(\mathrm{e})(\mathrm{g})$ Linear Derating Factor	P_{D}	$\begin{gathered} 3 \\ 24 \end{gathered}$	$\underset{\mathrm{mW} /{ }^{\circ} \mathrm{C}}{\mathrm{~W}}$

THERMAL RESISTANCE

PARAMETER	SYMBOL	VALUE	UNIT
Junction to Ambient (a)(f)	$\mathrm{R}_{\theta \mathrm{JA}}$	83.3	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Junction to Ambient (b)(f)	$\mathrm{R}_{\theta \mathrm{JA}}$	43	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Junction to Ambient (c)(f)	$\mathrm{R}_{\theta \mathrm{JA}}$	125	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Junction to Ambient (d)(f)	$\mathrm{R}_{\theta J A}$	111	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Junction to Ambient (d)(g)	$\mathrm{R}_{\theta J A}$	73.5	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Junction to Ambient (e)(g)	$\mathrm{R}_{\theta J A}$	41.7	${ }^{\circ} \mathrm{C} / \mathrm{W}$

Notes
(a) For a dual device surface mounted on 8 sq cm single sided 2 oz copper on FR4 PCB, in still air conditions with all exposed pads attached. The copper are is split down the centre line into two separate areas with one half connected to each half of the dual device.
(b) Measured at $\mathrm{t}<5$ secs for a dual device surface mounted on 8 sq cm single sided 20 copper on FR4 PCB, in still air conditions with all exposed pads attached. The copper are is split down the centre line into two separate areas with one half connected to each half of the dual device.
(c) For a dual device surface mounted on 8 sq cm single sided 2 oz copper on FR4 PCB, in still air conditions with minimal lead connections only.
(d) For a dual device surface mounted on 10 sq cm single sided $10 z$ copper on FR4 PCB, in still air conditions with all exposed pads attached attached. The copper are is split down the centre line into two separate areas with one half connected to each half of the dual device.
(e) For a dual device surface mounted on 85 sq cm single sided 2 oz copper on FR4 PCB, in still air conditions with all exposed pads attached attached. The copper are is split down the centre line into two separate areas with one half connected to each half of the dual device.
(f) For a dual device with one active die.
(g) For dual device with 2 active die running at equal power.
(h) Repetitive rating - pulse width limited by max junction temperature. Refer to Transient Thermal Impedance graph
(i) The minimum copper dimensions required for mounting are no smaller than the exposed metal pads on the base if the device as shown in the package dimensions data. The thermal resistance for a dual device mounted on 1.5 mm thick FR4 board using minimum copper 1 oz weight, 1 mm wide tracks and one half of the device active is $\mathrm{Rth}=250^{\circ} \mathrm{C} / \mathrm{W}$ giving a power rating of Ptot $=500 \mathrm{~mW}$.

ZXMNS3BM832

ELECTRICAL CHARACTERISTICS (at $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ unless otherwise stated).

PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT	CONDITIONS.
MOSFET						
STATIC						
Drain-Source Breakdown Voltage	$\mathrm{V}_{\text {(BR) } \mathrm{DSS}}$	30			V	$\mathrm{I}_{\mathrm{D}}=250 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}$
Zero Gate Voltage Drain Current	${ }^{\text {I DSS }}$			1	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{DS}}=30 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}$
Gate-Body Leakage	$\mathrm{I}_{\mathrm{GSS}}$			100	nA	$\mathrm{V}_{\mathrm{GS}}= \pm 20 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0 \mathrm{~V}$
Gate-Source Threshold Voltage	$\mathrm{V}_{\mathrm{GS} \text { (th) }}$	0.7			V	$\mathrm{I}_{\mathrm{D}}=250 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{DS}}=\mathrm{V}_{\mathrm{GS}}$
Static Drain-Source On-State Resistance (1)	$\mathrm{R}_{\text {DS(on) }}$		$\begin{array}{\|l\|} \hline 0.13 \\ 0.17 \\ \hline \end{array}$	$\begin{aligned} & 0.18 \\ & 0.25 \\ & \hline \end{aligned}$	$\begin{aligned} & \Omega \\ & \Omega \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{GS}}=4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=1.5 \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{GS}}=2.5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=1.3 \mathrm{~A} \end{aligned}$
Forward Transconductance (1)(3)	$\mathrm{g}_{\text {fs }}$		t.b.a		S	$\mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=1.5 \mathrm{~A}$
DYNAMIC (3)						
Input Capacitance	$\mathrm{C}_{\text {iss }}$		314		pF	$\begin{aligned} & V_{D S}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}, \\ & \mathrm{f}=1 \mathrm{MHz} \end{aligned}$
Output Capacitance	Coss		40		pF	
Reverse Transfer Capacitance	$\mathrm{C}_{\text {rss }}$		23		pF	
SWITCHING(2) (3)						
Turn-On Delay Time	$\mathrm{t}_{\mathrm{d} \text { (on) }}$		1.1		ns	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=1 \mathrm{~A} \\ & \mathrm{R}_{\mathrm{G}}=6.0 \Omega, \mathrm{~V}_{\mathrm{GS}}=4.5 \mathrm{~V} \end{aligned}$
Rise Time	t_{r}		1.5		ns	
Turn-Off Delay Time	$\mathrm{t}_{\mathrm{d} \text { (off) }}$		5.1		ns	
Fall Time	t_{f}		2.1		ns	
Total Gate Charge	Q_{g}		2.9		nC	$\begin{aligned} & \mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=4.5 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{D}}=1.5 \mathrm{~A} \end{aligned}$
Gate-Source Charge	Q_{gs}		0.6		nC	
Gate-Drain Charge	Q_{gd}		0.8		$n \mathrm{C}$	
SOURCE-DRAIN DIODE						
Diode Forward Voltage (1)	$\mathrm{V}_{\text {SD }}$		0.85	0.95	V	$\begin{aligned} & \mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{S}}=1.7 \mathrm{~A}, \\ & \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V} \end{aligned}$
Reverse Recovery Time (3)	t_{rr}		17.7		ns	$\begin{aligned} & \mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{F}}=2.7 \mathrm{~A}, \\ & \mathrm{di} / \mathrm{dt}=100 \mathrm{~A} / \mu \mathrm{s} \end{aligned}$
Reverse Recovery Charge (3)	$\mathrm{Q}_{\text {rr }}$		13.0		nC	
SCHOTTKY DIODE ELECTRICAL CHARACTERISTICS						
Reverse Breakdown Voltage	$V_{\text {(BR) }}$	40	60		V	$\mathrm{I}_{\mathrm{R}}=300 \mu \mathrm{~A}$
Forward Voltage	V_{F}		$\begin{aligned} & 240 \\ & 265 \\ & 305 \\ & 355 \\ & 390 \\ & 425 \\ & 495 \\ & 420 \end{aligned}$	$\begin{aligned} & 270 \\ & 290 \\ & 340 \\ & 400 \\ & 450 \\ & 500 \\ & 600 \end{aligned}$	mV mV	$\begin{aligned} & I_{\mathrm{F}}=50 \mathrm{~mA}^{*} \\ & \mathrm{I}_{\mathrm{F}}=100 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{F}}=250 \mathrm{~mA}^{*} \\ & \mathrm{I}_{\mathrm{F}}=500 \mathrm{~mA}^{*} \\ & \mathrm{I}_{\mathrm{F}}=750 \mathrm{~mA}^{*} \\ & \mathrm{I}_{\mathrm{F}}=1000 \mathrm{~mA}^{*} \\ & \mathrm{I}_{\mathrm{F}}=1500 \mathrm{~mA} A^{*} \\ & \mathrm{I}_{\mathrm{F}}=1000 \mathrm{~mA}, \mathrm{~T}_{\mathrm{a}}=100^{\circ} \mathrm{C} \end{aligned}$
Reverse Current	${ }^{\text {I }}$ R		50	100	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{R}}=30 \mathrm{~V}$
Diode Capacitance	C_{D}		25		pF	$\mathrm{f}=1 \mathrm{MHz}, \mathrm{V}_{\mathrm{R}}=25 \mathrm{~V}$
Reverse Recovery Time	t_{rr}		12		ns	switched from $I_{F}=500 \mathrm{~mA}$ to $I_{R}=500 \mathrm{~mA}$ Measured at $\mathrm{I}_{\mathrm{R}}=50 \mathrm{~mA}$

MLP832 PACKAGE OUTLINE (3mm x 2mm Micro Leaded Package)

*Exposed Flags. Solder connection to improve thermal dissipation is optional.
F1 at collector 1 potential
F2 at collector 2 potential
CONTROLLING DIMENSIONS IN MILLIMETRES
APPROX. CONVERTED DIMENSIONS IN INCHES

MLP832 PACKAGE DIMENSIONS

DIM	MILLIMETRES		INCHES		DIM	MILLIMETRES		INCHES	
	MIN.	MAX.	MIN.	MAX.		MIN.	MAX.	MIN.	MAX.
A	0.80	1.00	0.031	0.039	e	0.65 REF		0.0256 BSC	
A1	0.00	0.05	0.00	0.002	E	2.00 BSC		0.0787 BSC	
A2	0.65	0.75	0.0255	0.0295	E2	0.43	0.63	0.017	0.0249
A3	0.15	0.25	0.006	0.0098	E4	0.16	0.36	0.006	0.014
b	0.24	0.34	0.009	0.013	L	0.20	0.45	0.0078	0.0157
b1	0.17	0.30	0.0066	0.0118	L2	-	0.125	0.00	0.005
D	3.00 BSC		0.118 BSC		r	0.075 BSC		0.0029 BSC	
D2	0.82	1.02	0.032	0.040	θ	$0{ }^{\circ}$	12°	0°	12°
D3	1.01	1.21	0.0397	0.0476					

© Zetex plc 2002

Zetex plc	Zetex GmbH	Zetex Inc	Zetex (Asia) Ltd
Fields New Road	Streitfeldstraße 19	700 Veterans Memorial Hwy	3701-04 Metroplaza, Tower 1
Chadderton	D-81673 München	Hauppauge, NY11788	Hing Fong Road
Oldham, OL9 8NP			Kwai Fong
United Kingdom	Germany	USA	Hong Kong
Telephone (44) 1616224422	Telefon: (49) 894549490	Telephone: (631) 3602222	Telephone: (852) 26100611
Fax: (44) 1616224420	Fax: (49) 8945494949	Fax: (631) 3608222	Fax: (852) 24250494

[^0]This publication is issued to provide outline information only which (unless agreed by the Company in writing) may not be used, applied or reproduced for any purpose or form part of any order or contract or be regarded as a representation relating to the products or services concerned. The Company
reserves the right to alter without notice the specification, design, price or conditions of supply of any product or service.

For the latest product information, log on to Www.zetex.com

[^0]: These offices are supported by agents and distributors in major countries world-wide.

